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Abstract. The climate impact of the non-CO2 emissions, being responsible for two-thirds of aviation radiative forcing, highly

depends on the atmospheric chemistry and weather conditions. Hence, by planning aircraft trajectories to reroute areas where

the non-CO2 climate impacts are strongly enhanced, called climate-sensitive regions, there is a potential to reduce aviation-

induced non-CO2 climate effects. Weather forecast is inevitably uncertain, which can lead to unreliable determination of

climate-sensitive regions and aircraft dynamical behavior and, consequently, inefficient trajectories. In this study, we propose5

robust climate optimal aircraft trajectory planning within the currently structured airspace considering uncertainties in the

standard weather forecasts. The ensemble prediction system is employed to characterize uncertainty in the weather forecast,

and climate-sensitive regions are quantified using the prototype algorithmic climate change functions. As the optimization

problem is constrained by the structure of airspace, it is associated with hybrid decision spaces. To account for discrete and

continuous decision variables in an integrated and more efficient manner, the optimization is conducted on the space of prob-10

ability distributions defined over flight plans instead of directly searching for the optimal profile. A heuristic algorithm based

on the augmented random search is employed and implemented on graphics processing units to solve the proposed stochastic

optimization computationally fast. An open-source Python library called ROOST (V1.0) is developed based on the aircraft

trajectory optimization technique. The effectiveness of our proposed strategy to plan robust climate optimal trajectories within

the structured airspace is analyzed through two scenarios: a scenario with large contrails’ climate impact and a scenario with15

no formation of persistent contrails. It is shown that, for a night-time flight from Frankfurt to Kyiv, a 55% reduction in climate

impact can be achieved at the expense of a 4% increase in the operating cost.

Keywords: Climate change; Aircraft trajectory optimization; Algorithmic climate change functions; Meteorological forecast

uncertainty; Robustness; Graphics processing units; Structured airspace; ROOST.
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1 Introduction20

The aviation industry has experienced strong growth in recent years (Lee et al., 2021). The air traffic is estimated to grow at

a 4.3% annual rate over the next 20 years (Scherer, 2019). Aviation’s contribution to global warming through CO2 and non-

CO2 emissions is currently responsible for 3.5% of total anthropogenic radiative forcing (RF) (Lee et al., 2021). The non-CO2

climate impact includes nitrogen oxides (NOx) induced changes in ozone and methane concentrations, water vapor (H2O),

hydrocarbons (HC), carbon monoxide (CO), sulfur oxides (SOx), and increased cloudiness due to persistent contrail formation.25

Accounting for the growth rate of air traffic, a critical increase in its associated climate impact is foreseen.

Mitigating the climate impact associated with aviation-induced CO2 emissions requires progressing along with technical

aspects, such as moving toward more efficient aircraft and using novel propulsion as well as sustainable aviation fuel. Tech-

nological improvements can only be moderately inaugurated into the existing aircraft fleet. This is due to the aircraft’s long

life service and long phases in development, production, and certification. On the other hand, the climate impact caused by30

non-CO2 emissions, contributing approximately two times higher than CO2 emissions to aviation’s global warming (Lee et al.,

2021), reveals a high spatial and temporal dependency (Grewe et al., 2014b). Such dependencies provide the possibility to

mitigate their climate effects through operational strategies, particularly aircraft trajectory optimization to avoid areas sensitive

to aircraft emissions, called climate-sensitive regions (e.g. Simorgh et al., 2022).

Numerous studies have been proposed to reduce the climate impacts of non-CO2 emissions through changing aircraft ma-35

neuvers to avoid climate-sensitive regions. These studies differ mainly in 1) how the climate-sensitive areas are defined and 2)

how climate-friendly trajectories are determined. The first attempts to consider ’climate hotspots’ were based on areas sensitive

to the formation of persistent contrails (see Gierens et al. (2008)). In order to provide information on the spatial and temporal

dependency of non-CO2 effects, climate change functions (CCFs) were developed. These CCFs provide the climate impact

of aviation emissions per flown kilometer and per emitted mass of the species as five-dimensional data sets (i.e., longitude,40

latitude, altitude, time, type of emission) (Matthes et al., 2012; Frömming et al., 2013; Grewe et al., 2014b). Due to their

computational complexity, CCFs were unsuitable for real-time operations. Therefore, the so-called algorithmic climate change

functions (aCCFs) were developed. The aCCFs provide a very fast computation of the individual non-CO2 climate impact, as

they are based on mathematical formulas which only need relevant local meteorological input parameters (e.g., van Manen and

Grewe, 2019). The aCCFs are well-suited for trajectory optimization tools due to their computational efficiency (Matthes et al.,45

2017). An enhanced and consistent set (with respect to emission scenario, metrics, etc.) of aCCFs (aCCF-V1.1) have been

recently developed and introduced within the EU project FlyATM4E (see Yin et al. (2022); Dietmüller et al. (2022); Matthes

et al. (2022)).

As for climate optimal trajectory planning methods, various strategies ranging from mathematical programming (e.g., Camp-

bell et al. (2008)) to meta-heuristic (e.g., Yin et al. (2018a); Yamashita et al. (2020)), indirect optimal control (e.g., Sridhar50

et al. (2011)), and direct optimal control methods (e.g., Niklaß et al. (2017); Lührs et al. (2021, 2016); Matthes et al. (2020))

have been adopted. For instance, the direct optimal control approach has been employed by Hartjes et al. (2016) to minimize

flight time (or distance flown) in areas sensitive to persistent contrail formation, by Lührs et al. (2021) to minimize average

2

https://doi.org/10.5194/egusphere-2022-1010
Preprint. Discussion started: 15 November 2022
c© Author(s) 2022. CC BY 4.0 License.



temperature response over the next 20 years (ATR20) associated with the non-CO2 emissions, and by Vitali et al. (2021) to min-

imize the global warming potential (GWP) of NOx, H2O, soot, SO2, and contrails. Using aCCFs to quantify climate impacts,55

Yamashita et al. employed a genetic algorithm to determine climate optimal aircraft trajectories (Yamashita et al., 2020, 2021).

A classification of the most recent studies in this field is provided in Table 1. Interested readers are referred to Simorgh et al.

(2022) for our recent, comprehensive survey on climate optimal aircraft trajectory planning, reviewing both the approaches to

model climate-sensitive regions and trajectory planning methods.

To quantify the non-CO2 climate effects, some weather variables are required. In the case of aCCFs, variables such as60

temperature (T), potential vorticity (PV), geopotential (Φ), relative humidity over ice (rhum), and outgoing longwave radiation

(OLR) are needed. These variables can be obtained from standard weather forecasts. Several factors, including incomplete

understanding of the state of the atmosphere, computational complexity, and nonlinear and sometimes chaotic dynamics, affect

the accuracy of weather predictions, implying that the weather forecast is inevitably uncertain (WMO, 2012). These weather

forecast-related uncertainties in the aCCFs and also in aircraft dynamical behavior (e.g., uncertainty in wind and temperature),65

if not accounted for within aircraft trajectory planning, can lead to inefficient trajectories. Studies in the field of climate

optimal aircraft trajectory planning have been performed in a deterministic manner without taking into account any sources

of uncertainty (see Table 1) (Simorgh et al., 2022). A first step in managing and integrating meteorological uncertainties into

aircraft path planning is to obtain reliable weather forecasts that can predict probable variations in meteorological conditions.

To characterize weather forecast uncertainties, probabilistic weather forecasting (PWF) is typically used (AMS-Council, 2008).70

State-of-the-art probabilistic weather forecasting is obtained from the ensemble prediction system (EPS), which provides NEPS

possible realizations of meteorological conditions called ensemble members (Bauer et al., 2015).

When accounting for the ensemble weather forecast in solving aircraft trajectory optimization, the computational time is

an important issue that arises besides the capability to consider such uncertainties. This is due to the fact that, instead of

taking one weather forecast and solving the trajectory optimization in a deterministic manner, the optimizer should be capable75

of considering NEPS (e.g., NEPS = 50) different forecasts. Several studies have been proposed in the literature to determine

robust aircraft trajectories in the presence of meteorological uncertainty quantified using EPS weather forecast (though not

considering climate impact (Simorgh et al., 2022)). However, these studies suffer mainly from computational perspectives

and some restrictive assumptions (see Simorgh et al. (2022), Subsection 5.3). In this respect, developing efficient trajectory

optimization solvers capable of delivering robust climate optimal trajectories with the computational time compatible with80

operations has been identified as a scientific gap (see Simorgh et al. (2022)).

The focus of recent studies has been restricted to planning climate optimal trajectories considering the concept of future free-

route airspace (see last column Table 1); thus, not applicable for the structured airspace of today. The trajectory optimization

problem constrained by the structure of airspace results in hybrid decision spaces (e.g., route and flight level are discrete,

and speed schedule is continuous) (Gonzalez Arribas et al., 2020). The trajectory optimization problem with the combination85

of discrete and continuous decision variables is one of the most challenging optimization problems, typically solved using

mixed-integer nonlinear programming with intensive computational cost (e.g., see Bonami et al. (2013)).
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Table 1. A classification of the recent studies in the literature proposed to reduce the climate impact of aircraft emissions with aircraft

trajectory optimization.

Source Climate variable Optimization method Type Routing

Soler et al. (2014) CO2, Contrails Multiphase mixed-integer optimal control Deterministic Free-routing

Grewe et al. (2014a) NOx, H2O, CO2, Contrails Brute force algorithm Deterministic North atlantic track system

Hartjes et al. (2016) Contrails Direct optimal control Deterministic Free-routing

Lührs et al. (2016) NOx, H2O, CO2, Contrails Direct optimal control Deterministic Free-routing

Lim et al. (2017) Contrails, CO2 Nonlinear programming Deterministic Free-routing

Matthes et al. (2017) NOx, H2O, CO2, Contrails Direct optimal control Deterministic Free-routing

Niklaß et al. (2017) NOx, H2O, CO2, Contrails Direct optimal control Deterministic Free-routing

Yin et al. (2018b) Ozone Genetic algorithm Deterministic Free-routing

Yin et al. (2018a) Contrails Genetic algorithm Deterministic Free-routing

Niklaß et al. (2019) NOx, H2O, CO2, Contrails Direct optimal control Deterministic Free-routing

Yin et al. (2022) NOx, H2O, CO2, Contrails Genetic algorithm Deterministic Free-routing

Yamashita et al. (2020) NOx, H2O, CO2, Contrails Genetic algorithm Deterministic Free-routing

Matthes et al. (2020) NOx, H2O, CO2, Contrails Direct optimal control Deterministic Free-routing

Lührs et al. (2021) NOx, H2O, CO2, Contrails Direct optimal control Deterministic Free-routing

Yamashita et al. (2021) NOx, H2O, CO2, Contrails Genetic algorithm Deterministic Free-routing

Drawing upon the brief literature review and the presented open problems, we aim to address the problem of determining

robust climate optimal aircraft trajectory within the structured airspace in this study. Our main contributions are summarized

as follows: 1) full 4D climate optimal trajectory planning within the currently structured airspace, 2) accounting for uncertain90

meteorological conditions and uncertainty associated with initial flight conditions such as departure time and aircraft initial

mass, and 3) determining the optimized trajectory computationally very fast. The uncertainty in weather forecast is character-

ized using the ensemble prediction system, and aviation’s climate impacts are quantified by employing the latest version of

aCCFs (V1.1). The concept of robustness that we refer to is the determination of the aircraft trajectory considering all possible

realizations of meteorological variables provided using an EPS weather forecast. In other words, instead of planning a trajec-95

tory based on one forecast in a deterministic manner, we aim to determine a trajectory that is optimal considering the overall

performance obtained from using different members of an ensemble weather forecast. In this respect, from the operational

point of view, the optimized trajectory is tracked as determined, and the effects of meteorological uncertainties are reflected
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in the flight performance variables such as flight time, fuel burn, and climate impact. Mathematically, the perturbations due to

the meteorological uncertainty are considered in the dynamical model of aircraft, and the proposed trajectory optimization is100

generic in terms of the objective function, in which a wide range of objectives, such as flight time, fuel consumption, emissions,

and climate impact, and different statistics including expected values and variance of the performance variables can be con-

sidered. Such flexibility in defining the cost function allows for solving a multi-objective optimization problem. Moreover, by

penalizing the mean and variance of the objectives, the effects of uncertainty on flight variables can be controlled. In this study,

the flight planning objective is a weighted sum of the simple operating cost (as a function of flight time and fuel consumption)105

and climate impact, and the focus is restricted to the optimization of the expected performance since, as it will be shown in

the simulation results, for the considered case studies, the minimization of the averaged performance leads to reducing the

uncertainty ranges.

We employ the probabilistic flight planning method firstly developed by Gonzalez Arribas et al. (2020) to determine robust

climate optimal trajectories for three phases: climb, cruise, and descent. In this approach, to account for discrete and continuous110

decision variables in an integrated manner, the optimization is carried out on the space of probability distributions defined over

flight plans instead of directly searching for the optimal profile. Then, the probability distribution over flight plans is param-

eterized, allowing to generate multiple flight plans stochastically. The augmented random search algorithm is employed and

implemented on GPUs to deliver a near-optimal solution to the resulting stochastic optimization in seconds. We have developed

an open-source Python library called ROOST V1.0 (Robust Optimization of Structured Trajectories) based on the proposed ro-115

bust aircraft trajectory optimization technique, which is currently available via DOI (https://doi.org/10.5281/zenodo.7121862).

ROOST is a tool that efficiently uses the information provided by the prototype aCCFs (implemented in our recently devel-

oped python library CLIMaCCF V1.0 (DOI: https://doi.org/10.5281/zenodo.6977273) (Dietmüller et al., 2022)) for planning

climate optimal trajectories accounting for the operational constraints and uncertainty. Users need to input the required weather

variables, route graphs, and aircraft type specifications to start working with the library. In addition, users should assign values120

to the weighting parameters associated with different objectives in the objective functions. This paper is mainly devoted to the

climate optimal aircraft trajectory planning algorithm implemented in the library and its application to optimize different case

studies. Instructions to get started with the library can be found in the repository of ROOST.

The manuscript is arranged as follows. The robust climate optimal aircraft trajectory planning problem is presented and

solved in Section 2. The potential of our flight planning algorithm in reducing aviation’s climate impacts under uncertain125

meteorological conditions is explored in Section 3. The discussion on the obtained results is performed in Section 4, and some

concluding remarks close the paper in Section 5.

2 Robust climate optimal aircraft flight planning

The robust aircraft trajectory optimization problem within the structured airspace accounting for climate impacts is stated,

formulated, and solved in this section. Subsection 2.1 presents the deterministic climate optimal aircraft trajectory planning130

problem. In Subsection 2.2, the effects of uncertainty on the efficiency of the planned climate optimal trajectory are discussed,
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and the motivation to solve robust trajectory optimization is provided. Then, the trajectory optimization problem (stated in

Subsection 2.1) is reformulated in Subsection 2.3 to account for uncertainties. Finally, the approach to solving the robust

trajectory optimization problem is presented in Subsection 2.4.

2.1 Deterministic climate optimal aircraft flight planning: optimal control problem formulation135

Let us consider a dynamical system with the state-space representation as: ẋ(t)=f
(
t,z, x(t),u(t)

)
, where u ∈ Rnu , x ∈ Rnx ,

and z ∈ Rnz are the vectors of control inputs, states and algebraic variables, respectively and f is a vector field, mapping

R×Rnz ×Rnx ×Rnu → Rnx . A general formulation of the optimal control can be stated as follows:

min
u∈U

J(t0, tf ,x,u) =M
(
t0, tf ,x(t0),x(tf )

)
+

tf∫

t0

L
(
t,x(t),u(t),z

)
dt (1)

with respect to : ẋ(t) = f
(
t,z,x(t),u(t)

)
(2)140

h
(
x(t),u(t),z

)
= 0 (3)

g
(
x(t),u(t),z

)
≤ 0 (4)

Ψ
(
t0, tf ,x(t0),x(tf )

)
= 0 (5)

where Eq. (1) is the objective function including mathematically interpreted goals of optimization with M : R×R×Rnx ×
Rnx → R and L : R×Rnx×Rnu×Rnz → R as the Mayer and Lagrange terms called terminal cost and cost-to-go, respectively.145

The objective is to find a feasible control policy (u ∈ U) to minimize the performance index (Eq. (1)) respecting a set of

constraints, including dynamical constraints (Eq. (2)), equality and inequality path constraints (Eqs. (3,4)), and boundary

constraints (Eq. (5)). Notice that the optimal control problem stated here is a general form. Depending on the benchmark

problem, reformulations and approximations are normally made to address the required performance, such as computational

complexity. For instance, within the current formulation, the decision variable is only the control policy in the continuous150

domain; however, within some numerical approaches, such as the direct collocation approach, the system’s states are also

considered as decision variables and represented in a discrete fashion. In this study, we will slightly reformulate the optimal

control problem for the proposed path planning problem.

The definition of trajectory optimization problem within the context of optimal control theory mainly requires the aircraft

dynamical model, objective function, and physical and operational constraints. To consider climate impact within aircraft155

trajectory planning, information on the climate impacts of CO2 and non-CO2 emissions is necessary and needs to be included

in the objective function. In the following, the modeling of the mentioned elements is briefly presented.

2.1.1 Aircraft dynamical model

To determine reliable aircraft trajectories, accurate aircraft dynamical models are necessary. In this work, the point-mass model

with the following equations of motion is used to represent the aircraft’s dynamical behavior, as is usually considered within160
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air traffic management studies



ϕ̇

λ̇

ḣ

v̇

ṁ




=




(
v cosγ cosχ+wy

)(
RM (ϕ) +h

)−1

(
v cosγ sinχ+wx

)(
(RN (ϕ) +h)cosϕ

)−1

v sinγ
(
T (CT )−D(CL)

)
m−1− g sinγ

−FF (CT )




,

State variables (x) :
[
ϕ λ h v m

]T

,

Control variables (u) :
[
CT χ γ

]T

. (6)

where ϕ is the latitude, λ is the longitude, v is the true airspeed, h is the altitude, m is the mass, CT is the thrust coefficient,

γ is the climb angle, χ is the heading angle, CL(γ) = (2mg cosγ)/(ρv2S), and (wx,wy) are wind’s components. The Earth’s

ellipsoid radii of curvature in the meridian and the prime vertical are denoted withRM andRN , respectively, T is the magnitude165

thrust force and the drag force is denoted with D. g is the Earth’s gravity, FF is the fuel flow and S is the wetted surface of the

aircraft. BADA model (Gallo et al., 2006) is employed to provide the aerodynamic and propulsive performance of the aircraft.

Structured airspace

As trajectory optimization in this study is performed within the structured airspace, the evolutions of aircraft’s states are

constrained. In the following, we briefly present our proposed modeling of airspace structure and flight plan.170

We consider a directed acyclic graph G= (V,E) to model the airspace with V as the navigation waypoints and e ∈ E as the

airway edges connecting waypoints. The trajectory is assumed to start at the end of the standard instrument departure procedure

(SID) and end at the beginning of the standard instrument arrival procedure (STAR) to the destination airport, denoted as o ∈ V
and d ∈ V , respectively. We define the flight plan F with a tuple (R,FL,M,C,D,dD). In the flight plan (F ), the route (or

lateral path) denoted as R includes a sequence of waypoints i.e., R := (r0, r1, ·, rnr
). The vertical profile of the cruise, FL, is175

composed of an ordered sequence of tuples of the form (rk,FLk), indicating that, if the aircraft is in the cruise phase, the flight

level will be changed to FLk when the waypoint rk is reached (see Fig. 1). The Mach schedule M := (M0, · · · ,Mnr
) indicates

the target Mach number Mk at waypoint rk, during the cruise phase. Climb and descent profiles C,D : R→ R are represented

by continuous and piecewise-differentiable functions mapping the altitude to the target airspeed during the climb and descent

phases, respectively. Finally, a scalar variable dD shows the distance-to-go to the destination node at which the aircraft should180

end the cruise and start the descent phase.
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End of SID

Beginning of STAR

...

...

...

...
...

...

Horizontal structure

Cruise Phase

Cruise Phase

Vertical structure

SID: Standard Instrument Departure
STAR: Standard Instrument Arrival

Figure 1. Structure of airspace. The route graph is generated by processing the full airspace graph to include paths from the end of the SID

to the beginning of the STAR to the destination airport.

2.1.2 Objective function

The goals of the aircraft trajectory optimization problem are interpreted mathematically and defined as an objective function

to be minimized (or maximized). In addition to the climate impact, the operating cost is a crucial aspect that needs to be

considered as it is one of the main interests of airliners. Generally, there is a trade-off between the operating cost and climate185

impacts. This is due to the fact that rerouting sensitive areas to climate increases the operational costs as the aircraft tends to fly

longer routes (Niklaß et al., 2021). To consider both objectives in the trajectory optimization, we define the following objective

function:

Objective function = ψCST ·Operating cost +ψCLM ·Climate impact (7)

where ψCST and ψCLM are weighting parameters penalizing cost and climate impact, respectively. In the following, the proposed190

modeling of these two objectives is presented.

8

https://doi.org/10.5194/egusphere-2022-1010
Preprint. Discussion started: 15 November 2022
c© Author(s) 2022. CC BY 4.0 License.



Operating cost

There exist various approaches to account for operating costs within aircraft path planning. Flight time or/and fuel are common

objectives. However, more realistic cost metrics exist, which include additional costs such as flight crew, cabin crew, and

landing fees. Interested readers are referred to Simorgh et al. (2022) for a classification of these metrics.195

In this study, we use simple operating cost (SOC) as a metric expressing cost in USD with linear relation to flight time and

fuel consumption:

Operating cost = ψt · (tf − t0) +ψm · (m0−mf ) (8)

where t0 and tf are the initial flight time and final flight time weighted by ψt = 0.75 [USD/s], and m0 and mf are the initial

mass and final mass weighted by ψm = 0.51 [USD/kg]. In spite of considering only flight time and fuel burn to represent the200

operating cost, it was reported in Table 4 of Yamashita et al. (2021) that employing SOC and a more comprehensive metric such

as cash operating cost within trajectory optimization delivered almost similar results. This is mainly related to the consideration

of time and fuel burn to calculate costs of other aspects such as crew’s salaries.

Climate impact

Numerous approaches have been proposed in the literature to consider climate impact within aircraft trajectory planning strate-205

gies (see Table 1 and Figure 2 of (Simorgh et al., 2022)). In this study, the climate impact of aircraft operations is modeled

using the prototype aCCFs. The suitability of aCCFs for climate optimal trajectory planning can be justified as follows:

– aCCFs account for the temporal and spatial dependency of climate impacts associated with non-CO2 species, including

ozone and methane, resulted from NOx emissions, water vapor emissions, and persistent contrails.

– aCCFs estimate the climate impact associated with aircraft emissions computationally in real-time, making it well-suited210

for climate optimal trajectory planning.

– aCCFs directly quantify climate impacts in average temperature change.

In this study, we adopt aCCF-V1.1 developed by Matthes et al. (2022) within the EU project FlyATM4E. The aCCF-V1.1

is based on aCCF-V1.0 but includes educated guess factors to address the uncertainty associated with the current level of

scientific understanding of aviation’s climate impact effects. The aCCF-V1.0 reported by Yin et al. (2022) (which is the basis215

for developing the aCCF-V1.1), is the first complete and consistent set of prototype aCCFs, providing spatial and temporal

dependent non-CO2 climate effects in terms of average temperature response over the next 20 years for pulse emission scenario

(P-ATR20).

The suitability of the physical climate metrics is application-dependent (Grewe and Dahlmann, 2015). As for mitigating

the climate impacts of aviation with trajectory planning, average temperature response over the next 20 years with business-220

as-usual (BAU) future emission scenario is a suitable choice (Grewe et al., 2021). To this end, the aCCFs based on the pulse

emission scenario are converted to the future scenario (F-ATR20) using values reported in Table 3 of Dietmüller et al. (2022).

9
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The aCCFs are further scaled by using efficacy parameters reported by Dietmüller et al. (2022) to account for the effectiveness

of non-CO2 forcing agents in changing global mean temperature compared to that of CO2 (see Dietmüller et al. (2022) for a

detailed description). For the sake of compactness of notation, F-ATR20 with educated guess factors and efficacy parameters225

is replaced with ATR in the following.

For the aCCFs of (day-time and nigh-time) contrails, the ice-supersaturation is applied, using temperature and relative hu-

midity over ice in order to predict regions where persistent contrails are expected to form, called persistent contrails formation

areas (PCFA) (Schmidt, 1941; Appleman, 1953). To represent the climate impacts using aCCFs in the average temperature

change (i.e., [K]), fuel consumption rate, NOx emission, and distance flown through PCFA are required.230

The geographical aCCF pattern of water vapour, NOx induced ozone and methane, as well as of contrail is shown in Fig.

2a-c for 13th of June 2018, 00:00 UTC over the European region at pressure level 250hPa. Moreover, Fig. 2d shows the pattern

of the merged non-CO2 aCCFs that combines the individual aCCFs (Fig. 2a-c). Note that to generate the merged aCCFs and

to compare the contribution of each species, we adopt typical transatlantic fleet mean values to unify the units of aCCFs

in K/kg(fuel). The approximated conversion factors for NOx emission and contrails are 13× 10−3Kg(NO2)/Kg(fuel) and235

0.16×km/Kg(Fuel), respectively (Graver and Rutherford (2018), Penner et al. (1999)). It is clear from the merged aCCFs that

the contrails have dominant climate effects, which is in line with related studies employing aCCFs (e.g., see Dietmüller et al.

(2022)).

To benefit from the spatial and temporal dependency of non-CO2 climate effects identified using aCCFs in planning climate

optimal trajectories, we define the following objective expressed in Lagrange form for Eq. (7):240

Climate impact =

tf∫

t0

5∑

i=1

ψATR,i ·ATRi

(
t,x(t),u(t)

)
dt (9)

for i ∈ {CH4,Cont.,O3,H2O,CO2}:

ATRO3(t,x,u) = 10−3× aCCFO3

(
t,x) · ṁnox(t)

ATRCH4(t,x,u) = 10−3× aCCFCH4

(
t,x) · ṁnox(t)

ATRCont.(t,x,u) = 10−3× aCCFCont.(t,x) · vgs(t)

ATRH2O(t,x,u) =−aCCFH2O(t,x) · ṁ(t)

ATRCO2(t,x,u) =−aCCFCO2 · ṁ(t) (10)

where ṁnox(t) = FF (t,u) ·EINOx(t,x,u), EINOx(·) is the actual NOx emission index in [g(NO2)/kg(fuel)], and vgs is the

ground speed. The NOx emission index varies with many factors such as aircraft type, fuel flow, flight altitude, and synoptical245

situation. To consider such dependencies, the Boeing fuel flow method 2 (BFFM2), calculating the actual emission index

of NOx from the reference conditions, is adopted (DuBois and Paynter, 2006; Jelinek, 2004). The reference conditions are

obtained from the International Civil Aviation Organization (ICAO) data bank. Notice that the objective regarding climate

impact is expressed in Lagrange (i.e., as integral) since the climate impact needs to be evaluated (and accumulated) along the

route, unlike the operating cost, which requires only information on boundary values (e.g., initial and final flight time).250
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(a) (b)

(c) (d)

Figure 2. Algorithmic climate change functions of (a) water vapour, (b) NOx, (c) contrails, and (d) of the total non-CO2 effects on 13th of

June 2018, 00:00 UTC over European airspace at pressure level 250hPa.

2.2 Uncertainty from weather forecast

The aircraft trajectory optimization problem within the context of optimal control theory (as formulated in Subsection 2.1)

requires the aircraft dynamical model, flight objectives, and physical and operational limitations (Simorgh et al., 2022).

The dynamical model of aircraft requires weather-related variables such as wind and temperature (e.g., see Subsection 2.1.1).

In addition, the non-CO2 climate effects of aviation included in the objective function of the optimization problem strongly255

rely on weather conditions (see Subsection 2.1.2 in case of using aCCFs). Since the required meteorological variables are

obtained from standard weather forecasts, they are inevitably uncertain. It is worth mentioning that there exist other sources of

uncertainty affecting the efficiency of the planned climate optimized trajectories, including uncertainty from climate science

(e.g., modeling and estimating aviation-induced climate effects), emission calculation, and also inaccurate modeling of aircraft

behavior, which are not the scope of this paper but have been identified as open problems (see Matthes et al. (2022)).260

In this paper, the focus is on forecast-related uncertainties, which will be characterized by employing ensemble prediction

system (EPS) weather forecasts, a numerical weather prediction method introduced to deal with uncertainty in weather forecast

(Bauer et al., 2015). These are forecasts in which both the initial conditions and the physical parameters of a numerical weather

integration model are slightly modified from one member to another and provide NEPS (typically NEPS = 50) different predic-
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tions known as ensemble members (Bauer et al., 2015). Each member of an ensemble represents one possible realization of265

meteorological situations. As the aCCFs take as inputs some meteorological variables, NEPS different aCCFs can be calculated

for an EPS weather forecast. For instance, meteorological variables temperature and relative humidity over ice are required

for the aCCF of night-time contrails. Notice that relative humidity over ice is required for identifying ice-supersaturated areas.

Feeding NEPS probable realizations of these meteorological variables (i.e., ensemble members), NEPS different aCCFs (i.e.,

aCCFConti for i= 1, · · · ,NEPS) are calculated. The same applies to system dynamics (considering uncertainty in temperature270

and wind) and also the NOx emission index (due to the dependency on ambient temperature and specific humidity).

To investigate the degree of uncertainty (or variability) in the meteorological variables provided by an EPS and its effects

on the computed aCCFs, we take the standard deviation (STD) from ten ensemble members of weather data obtained using

the ERA5 reanalysis data products1. It should be noted that the reanalysis data products are generated from post-processing

with observations. Thus, the variability among the ensemble members is expected to be lower than the forecast data with more275

ensemble members, yet still is valid to illustrate. Figure 3 shows the STD of weather-variables required to calculate aCCFs

and aircraft trajectory on 13th of June 2018, 00:00 UTC, at the pressure level 250hPa. The STD is taken over the normalized

variables (with respect to their maximum values) for comparison purposes. The variability of geopotential, temperature, and

wind is small compared to potential vorticity, outgoing longwave radiation, and relative humidity. The STDs of the calculated

aCCFs based on the ensemble members are illustrated in Fig. 4. Since the aCCF of NOx emission (i.e., methane and ozone)280

depends on geopotential and temperature, its STD is small compared to the aCCFs of water vapor and night-time contrails,

which are based on potential vorticity and relative humidity (when applying the ice-supersaturated condition), respectively.

Notice that the uncertainty in the climate impact of contrails is much higher than water vapor due to the variability of relative

humidity in satisfying the persistency condition of contrails (see STD of PCFA in Fig. 4). Due to the considered time (i.e.,

00:00 UTC), the aCCF of contrails is based on the formulation of night-time aCCFs. In spite of neglectable uncertainty in285

the aCCF of NOx, and also relatively low uncertainty in the aCCF of water vapor compared to aCCF of contrails, due to the

dominant climate impact of contrails, the net non-CO2 climate effect is considerably uncertain (see STD of the merged aCCFs

in Fig. 4), which must be crucially taken into consideration.

Fig. 5 shows how uncertainty in meteorological variables can affect the performance of aircraft trajectories. As can be seen,

these uncertainties are accumulated and can considerably degrade the efficiency of the optimized trajectory if not considered in290

the aircraft trajectory planning a priori. No recent study on the determination of climate-optimized trajectories has considered

the robustness in the sense of uncertainty in weather forecasts. One of the main reasons for not considering such variations is the

computational time that arises within the optimization techniques. In fact, instead of considering one member, the optimization,

in this case, is to consider NEPS ensemble members (e.g., 50) and find an optimized trajectory to be optimal with respect to

all probable realizations of meteorological variables. Such an increase of dimensions is daunting to cope with employing the295

classical dynamical optimization approaches such as direct optimal control.

In Subsections 2.3 and 2.4, we will address the problem of robust climate optimal trajectory planning with an efficient

heuristic method implemented on GPUs.

1https://cds.climate.copernicus.eu/
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Figure 3. Variability (quantified using STD) of the meteorological conditions for an ensemble weather forecast with 10 ensemble members

on 13th of June 2018, 00:00 UTC over European airspace at pressure level 250hPa.
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Figure 4. Variability (quantified using STD) of aCCFs for an ensemble weather forecast with 10 ensemble members on 13th of June 2018,

00:00 UTC over European airspace at pressure level 250hPa.
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Meteorological variables

+ +

rhum

Average Temperature Response

Aircraft Dynamical Model

Simple Operating Cost

OLR: Outgoing longwave radiation [W/m2]
T: Temperature [K]
rhum: Relative humidity [%]
PV: Potential Vorticity [10-6K.m2/kg.s]
    : Geopotential [m2/s2] 
Fin : Maximum incoming solar radiation [W/m2]
q: Specific humidity [kg/kg]
m: mass [kg]
t: flight time [s]
d: distance flown [m]

Initial conditions

Sources of uncertainty
Affected elements

Algorithmic climate change functions

Figure 5. Propagation of uncertainties (associated with initial flight conditions and meteorological variables) within climate optimal aircraft

trajectory planning.

2.3 Robust climate optimal flight planning problem formulation

In Subsection 2.1, the climate optimal trajectory planning was stated for the deterministic problem. Due to the effects of300

uncertainty discussed in Subsection 2.2, we redefine the optimization problem by taking into account uncertain meteorological

conditions.

Let us consider a class of dynamical systems with uncertainty as follows:

ẋ(t,ω) = f
(
t,x(t,ω),u(t,ω),z(t,ω), ζ(ω)

)
. (11)

The uncertain parameters (denoted with ζ ∈ Rnζ ) are considered as continuous random variables and assumed to have known305

probability distribution functions ζ(·) : Ω→ Rnζ , where Ω is a space of possible outcomes. The random variables take different

values depending on the probable outcomes (i.e., ζ(ω) for ω ∈ Ω). The nonlinear function f(·) is assumed to be a measurable

function in ζ. To emphasise on the effects of random variables on the system’s trajectories, all the variables were denoted with

dependency on possible outcomes (e.g., x(t,ω)). For the sake of improving clarity, the abbreviated notation (e.g., x(t)) will be

used in the following. In the context of optimal control theory, the following general form of the cost functional is considered310
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for robust problems:

J = E
{
M

(
t0,x(t0), tf ,x(tf )

)
+

tf∫

t0

L
(
t,x(t),u(t),z(t), ζ

)
dt

}
(12)

whereM : R×Rnx×R×Rnx → R and L : R×Rnx×Rnu×Rnz×Rnζ → R are the Mayer and Lagrange terms, respectively.

The objective function is written in terms of using the expectation operator, however, other statistics can be evaluated under this

formulation. For instance, one can include the variance of a function A(ζ) as: V{A}= E
{(
A−E{A}

)2} = E{A2}−E{A}2,315

where V{·} is the variance operator.

Within the proposed robust aircraft trajectory optimization, the uncertainty is considered in the weather forecast and initial

flight conditions. To obtain a climate-optimized trajectory, we define the following performance index

J = ψCST

[
ψt · Exp. Flight time +ψm ·Exp. Fuel burnt

]
+ψCLM ·Exp. ATR

Exp. Flight time : E
{

FT
}

:= E
{
tf − t0

}

Exp. Fuel burnt : E
{

FB
}

:= E
{
m0−mf

}

Exp. ATR : E
{

ATR
}

:= E
{

tf∫

t0

5∑

i=1

ψATR,i ·ATRi

(
t,x(t),u(t), ζ

)
dt

}
(13)

for i ∈ {CH4,Cont.,O3,H2O,CO2}:320

ATRO3(t,x,u, ζ) = 10−3× aCCFO3

(
t,x, ζ) · ṁnox(t,ζ)

ATRCH4(t,x,u, ζ) = 10−3× aCCFCH4

(
t,x, ζ) · ṁnox(t,ζ)

ATRCont.(t,x,u, ζ) = 10−3× aCCFCont.(t,x, ζ) · vgs(t,ζ)

ATRH2O(t,x,u, ζ) =−aCCFH2O(t,x, ζ) · ṁ(t,ζ)

ATRCO2(t,x,u, ζ) =−aCCFCO2 · ṁ(t,ζ) (14)

which is similar to the deterministic case in the sense of objectives and formulation but associated with uncertainty. Notice

that we define the objectives considering the expected performance. One can use other statistics, such as variance, without

loss of generality. For instance, to penalize the range of uncertainty on climate impacts, V{ATR}= E{ATR2}−E{ATR}2

should be included in the objective function. For the considered case studies, it will be shown that the minimization of the325

expected objective function will reduce the uncertainty on the most uncertain variable for the climate optimal routing option,

thus providing a robust solution without penalizing the deviation. The forecast-related uncertainties and uncertainty associated

with initial flight conditions are denoted here with the vector ζ. For instance, the uncertainty in ATRO3(t,x, ζ) is due to the

uncertainty in aircraft performance variables (i.e., m(t,ζ) which is affected by uncertainty in temperature and wind) and also

temperature (i.e., T(t,x, ζ)) and geopotential (i.e., Φ(t,x, ζ)) for calculating aCCFO3 . For each probable realization of uncertain330
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variables ζ(ω = ω0), a deterministic trajectory optimization problem can be solved. In the next section, we employ a robust

optimization framework to determine climate optimal trajectories under uncertain meteorological conditions with a relatively

fast algorithm.

2.4 Solution approach

The aircraft trajectory optimization problem formulated in Subsection 2.3 is solved by employing the method firstly developed335

by Gonzalez Arribas et al. (2020), which is a stochastic optimization technique for the structured airspace and is capable of

determining the optimized trajectory in four dimensions, i.e., latitude, longitude, altitude, and time.

As mentioned in Subsection 2.1, depending on the problem, some reformulations and approximations are normally made

to the optimal control problem formulation to address the required objectives. Here, instead of seeking the optimal control

policy (i.e., uo), the goal is to find an optimal flight plan F o, i.e., (Ro,FL
o
,M

o
,Co,Do,do

D)) (see Subsection 2.1.1) that340

minimizes the objective function given in Eq. (13) and satisfies the aircraft dynamical model (given in Eq. (6)), path and

boundary constraints. Such a selection of decision space allows us to directly account for the operational restrictions, such as

determining lateral routes that follow the airspace structure.

2.4.1 Ensemble trajectory integration

To determine the performance of a flight plan and evaluate the cost function Eq. (13), the corresponding trajectories of the345

aircraft are to be calculated using the aircraft dynamical model (provided in Subsection 2.1.1). As mentioned in Subsection

2.2, aircraft trajectories are affected by uncertainty in meteorological variables, including temperature and wind. Assuming

a unique lateral path (constant course) to be tracked in practice with low-level controllers in real-time, the uncertainty in the

wind (both magnitude and direction) will affect ground speed and, consequently, the time aircraft flies the route (see Fig. 6).

In addition, uncertainty in temperature affects fuel consumption because the propulsive and aerodynamic performance of the350

aircraft and also airspeed have a dependency on temperature (Gonzalez Arribas et al., 2020). From Eq. (14), one can conclude

that the uncertainty in flight time and flight mass can also affect the climate impacts (see also Fig. 5). In addition to the

uncertainty in meteorological variables which is characterized using ensemble weather forecasts, uncertainty associated with

initial flight conditions is taken into account within trajectory optimization problem. In this study, the initial flight time and

initial mass of the aircraft are modeled as Gaussian variables, i.e., t0 ∼N(t̄0,σt0) and m0 ∼N(m̄0,σm0).355

To efficiently reflect the effects of wind uncertainty in flight performance variables, instead of time, the distance flown along

the route (s) is considered as the independent variable using (dt)(ds)−1 = v−1
gs . This is beneficial since the uniqueness of time

for all possible realizations of wind means that the position of the aircraft is fixed with respect to time. In this case, the effects

of uncertainty cannot be considered efficiently because the range of feasible solutions is limited. The selection of distance

flown as the independent variable allows for reflecting wind uncertainty in flight time.360

According to the defined objective function (Eq. (13)), the flight performance variables required to evaluate Eq. (13) are

flight time, final mass and the climate impact. By using TI(·) to denote the integration of the aircraft dynamical model for a

given flight plan, weather data, and initial flight conditions, we receive the expected final mass, the expected final time, and
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Figure 6. Relationship between wind, course, heading, airspeed, and ground speed.

the expected ATR required to evaluate the performance of aircraft trajectory (i.e., calculate the objective function given in Eq.

(13)) as follows:365
[
E

{
FT

}
, E

{
FB

}
, E

{
ATR

}]
= E

{
TI(F,W,t0,m0)

}
. (15)

In the formulated robust optimization problem, the uncertain variables are considered as continuous random variables with

known probability distribution functions. As the weather variables for an ensemble weather forecast are directly represented in

a discrete fashion, we assume a discrete probability distribution for the uncertainty. Considering NEPS probable realizations of

uncertainty (i.e., {ζj}NEPS
1 ), weather variables take discrete values as {W 1,W 2 · · · ,WNEPS }, where370

W j :=
[
Tj wj

x wj
y Φj rjhum qj PVj OLRj

]
(16)

is a set of meteorological variables required for climate optimal trajectory planning andW j(·) :=W (·, ζj). Generally, different

members of the ensemble weather forecasts are considered equally probable. This implies that a specific forecasted weather

pattern that has a higher probability will be represented by a larger number of ensemble members. Probabilistic metrics such as

ensemble mean and ensemble spread use equal weights to calculate average values. In this study, we use equal weights for each375

probable realization of weather variables, i.e., with a probability of P(W =W j) =N−1
EPS. Thus, using an unweighted average

between all ensemble members, Eq. (15) can be written as:

[
E

{
FT

}
, E

{
FB

}
, E

{
ATR

}]
≈ 1
NEPS

NEPS∑

j=1

TI(F,W j , tj0,m
j
0) (17)
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where tj0,m
j
0 ∼ t0,m0 are sampled independently,W j is j-th member of the ensemble weather forecast, and the expected ATR

is calculated as380

E{ATR} ≈ 1
NEPS

NEPS∑

j=1

ATRj ; ATRj =
5∑

i=1

ATRj
i

for i ∈ {CH4,Cont.,O3,H2O,CO2}. For instance, ATRj for ozone and contrails can be calculated as

ATRj
O3

= 10−3

tj
f∫

tj
0

aCCFj
O3

(
xj(tj), tj

)
×

ṁj
nox(tj)︷ ︸︸ ︷

FF
(
xj(tj , tj),uj(tj)

)
×EIjNOx

(
xj(tj),uj(tj , tj)

)
dtj

ATRj
Cont. = 10−3

tj
f∫

tj
0

aCCFj
Cont.

(
xj(tj), tj

)
vj

gs(t
j)dtj = 10−3

sf∫

0

aCCFj
Cont.

(
xj(tj(s)), tj(s)

)
ds (18)

where xj(tj) and uj(tj) are the state and control variables of the aircraft considering j-th realization of weather variables and

j-th sampled initial conditions, ds= vj
gs · dtj , and385

aCCFj
O3

(xj(tj), tj) := aCCFO3

(
Tj

(
xj(tj), tj

)
,Φj

(
xj(tj), tj

))

aCCFj
Cont.(x

j(tj), tj) := aCCFCont.

(
Tj

(
xj(tj), tj

)
,OLRj

(
xj(tj), tj

)
, rjhum

(
xj(tj), tj

))
(19)

where the weather variables such as Tj , Φj are j-th members of the ensemble weather forecast. The actual NOx emission

index, i.e. EIjNOx

(
xj(tj),uj(tj)

)
is calculated using BFFM2. As can be seen in Eq. (18), the climate impact due to the NOx

emission depends on the amount of NOx emitted in NOx-sensitive regions, while for contrails, it depends on the distance flown

in persistent contrail formation areas.390

Heun’s method is adopted for integrating the aircraft dynamical model along discretized segments of the route through each

phase, i.e., climb, descent, and cruise (Gonzalez Arribas et al., 2020). Since the calculations are similar for different members,

parallelization would be beneficial in reducing computational time. Here, CUDA (Guide, 2013; Klöckner et al., 2012), a tool

for general-purpose computing on the graphics processing unit, is employed to parallel the computations.

2.4.2 Performance evaluation of a flight plan395

The expected values obtained from Eq. (17) are for a specific flight plan. By these settings, for this flight plan, the cost function

given in Eq. (13) can be evaluated with the following equation

J(F ) = ψCST

[
ψt ·E{FT}+ψm ·E{FB}

]
+ψCLM ·E{ATR}. (20)

Figure 7 shows how the expected performance is calculated and evaluated for a given flight plan and an ensemble weather

forecast. The objective is to find a flight plan that minimizes Eq. (20). Since the flight plan includes both discrete and continuous400

decision variables, the optimizer should be capable of solving the optimization within the hybrid decision spaces. A classical
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Figure 7. Calculation and evaluation of the expected performance for a given flight plan and an ensemble weather forecast.

approach to solving such optimization problems is mixed-integer nonlinear programming, which is mathematically complex

and computationally intensive.

2.4.3 Probabilistic flight plan generation

To solve the optimization with hybrid decision variables in an efficient manner, instead of directly searching for the optimal405

flight plan, the optimization is conducted in the space of probability distributions defined over flight plans. In other words,

instead of directly minimizing minF J(F ), the minimization of the following equivalent problem is considered

min
p(F )

Ep(F )[J(F )] (21)

which provides the same optimal solution, i.e., if F ∗ is the optimal solution to the original problem, P(F = F ∗) = 1 provides

the same results. The optimization is carried out in the space of probability distributions to move to continuous search space.410

In addition, it can facilitate searching by parameterizing the distribution p with a parameter vector θ ∈ RΘ, approximating Eq.

(21) as

min
θ

Ep(F ;θ)[J(F )] (22)
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which generally is not identical to Eq. (21), as it relies on whether the parameterization is able to capture a distribution where

P(F = F ∗) = 1. Thus, the parameterization of the distribution p using the vector θ plays an important role in approximating the415

original problem. In Gonzalez Arribas et al. (2020), the Probabilistic-execution Flight Plan (PF ) is introduced to parameterize

the distribution over the space of possible flight plans. In this approach, the parameter vector θ is defined as follows:

θ =
[
ΥT M̂T F̂LT ĈT D̂T dT

D

]T

∈ RΘ (23)

where Υ ∈ Rnsp is a vector assigning probability to select each airway, and M̂, F̂L, Ĉ, D̂, and dD are the parameterized Mach

schedule, flight level, climb profile, descent profile and distance-to-go, respectively. For a parameter vector θ of a PF , flight420

plans can be randomly generated. For instance, let us explain how the lateral path is sampled from a given vector of parameters

Υ. First, assume that all waypoints of the graph are processed and limited to two outgoing airways. This can be done by

considering virtual edges of zero length for those waypoints with more than two outgoing airways. The vector composed by

a set of junctions is defined as V̄ = {vk}nsp

k=1 ∈ Rnsp . At k-th junction waypoint, the selection of airway is done through a

random process: for k-th entry of a given vector Υ (i.e., υk), and k-th entry of a vector containing uniform random variables425

ξk(∈ Ξ∼ U(0,1)), the airway is selected as:

selected airway at k-th junction waypoint =





airway 1 S(υk)≤ ξk

airway 2 S(υk)> ξk

where S(·) is a sigmoid function: S(x) = 0.5[1 +x(
√

1 +x2)−1]. Therefore, for a given vector of parameters Υ and a given

vector of random variables, a lateral path (restricted to the structure of airspace) can be sampled. The approach to sampling

a complete flight plan from p(F ;θ), such as sampling Mach schedule and flight level, is presented in Gonzalez Arribas et al.430

(2020) (see Algorithm 1). It is worth mentioning that the operational aspects and feasibility of the aircraft trajectory are

considered within the generation of flight plans. For instance, continuous Mach adjustment is avoided, and flight level changes’

frequency is limited.

2.4.4 Optimization: augmented random search

In the probabilistic-execution flight plan approach, to sample the flight plan from a given θ, vectors containing random variables435

are required. Thus, the PF associated with θ is stochastic. To evaluate Eθ[J(F )] := Ep(F ;θ)[J(F )] for a given θ, sampling of

multiple flight plans is required. By generating NFP sets of random variables, NFP flight plans (i.e., Fj for j = 1, · · · ,NFP) can

be sampled independently for a given θ. To benefit from the provided NEPS probable realizations of meteorological variables,

and NEPS samples of exogenous sources of uncertainty (i.e., initial flight time and initial flight mass), we sample NEPS (i.e.,

NFP =NEPS) potential flight plans for a given θ. In other words, each sampled flight plan is evaluated with one realization of440

meteorological conditions. In this respect, one can rewrite Eqs. (17,20) as:
[

F̂T, F̂B, ÂTR
]

=
1

NEPS

∑

j

TI(Fj ,W
j , tj0,m

j
0)
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Eθ[J(F )]≈ Ĵ := ψCST

[
ψt · F̂T +ψm · F̂B

]
+ψCLM · ÂTR. (24)

The flight planning problem can now be expressed as the following stochastic optimization problem:445

min
θ

E[Ĵ ] (25)

where the objective is to find the optimal value of θ (which parametrizes the probability distribution p(F ;θ)) such that a

population of randomly sampled flight plans minimizes the expected cost Eq. (25). Sampling NEPS flight plans and using

them in a pair-wise manner with ensemble members for trajectory integration to evaluate Eq. (24) is computationally more

efficient than sampling a different number of flight plans (NFP ̸=NEPS) and then evaluating each sampled flight plan with all450

the ensemble members. This is because, in this case, we only integrate the aircraft trajectory NEPS times instead of performing

NFP×NEPS trajectory integrations. In spite of reducing the number of computations, it provides similar results. This is due to

the fact that, despite sampling multiple flight plans for the evaluation of the objective function Eq. (24) for a given θ, as the

process goes by, all flight plans converge to a unique flight plan. For instance, let us consider the process of sampling the lateral

path presented in Subsection 2.4.3. The choice of each airway relies on two parameters: υ and ξ. For the first iterations of455

the optimization algorithm, all outgoing airways from waypoints are almost equally probable. However, with more iterations,

the decision variable θ is improved, leading to increasing or decreasing the parameter υ. This parameter converges to a large

positive or negative value for the last iterations. For instance, in the case of large υ, limυ→∞S(υk) = 1, implying S(υk)≥ ξk

for all the sampled flight plans. Thus, in the end, for the optimal value of θ obtained from optimization, we receive a unique

flight plan. In this case, for the similar flight plans that are sampled for the last iterations, the expected flight performance460

variables obtained (from Eq. (24)) using NFP×NEPS and NEPS times trajectory integration will be almost the same.

In this work, the V1 version of the Augmented Random Search (ARS) algorithm adopted from (Mania et al., 2018; Gonza-

lez Arribas et al., 2020) is employed. This is a gradient-like algorithm in which, it starts from an initial point θ0, then generates

n random search directions ω ∈ RΘ. In the next step, it evaluates Ĵ+ := Ĵ(θ+Sω) and Ĵ− := Ĵ(θ−Sω), where S ∈ RΘ×Θ

is a diagonal matrix, adjusting the relative variations that are allowed between decision variables. Then, the decision variables465

θ are improved along all search directions proportional to Ĵ+− Ĵ−. The algorithms, details on the optimization approach, and

also parallelization on GPUs are provided in (Gonzalez Arribas et al., 2020).

3 Results

The effectiveness of the proposed optimization algorithm to plan robust climate optimal aircraft trajectories with respect to

uncertain meteorological conditions is analyzed for a flight from Frankfurt to Kyiv on two different days and departure times:470

– Scenario 1: 13th of June 2018, 0000UTC, a scenario in which aircraft flies through areas favorable for the formation of

persistent contrails.

– Scenario 2: 10th of December 2018, 1200UTC, a scenario with no formation of persistent contrails.
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Table 2. The data obtained from the ICAO databank to calculate the actual emission index of Airbus model A320-214, with the engine

CFM56-5B4/P.

Parameter Value Unit Description

FFref 1.132, 0.935, 0.312, 0.104 [kg/s]
Reference fuel flow at take-off, climb out, approach,

and idle conditions, respectively.

EINOx,ref 28, 23.2, 10, 4.3 [g/kg]
Reference NOx emission index at take-off, climb out,

approach, and idle conditions, respectively.

r 1.010, 1.013, 1.02, 1.1 -
Boeing adjustment factor for take-off, climb out, approach,

and idle conditions, respectively (DuBois and Paynter, 2006).

The dominant climate impact of contrails is the main reason for selecting these two scenarios, providing better insight into the

mitigation potentials.475

For the route graph, the full airspace graph of the considered days is filtered and processed to include all paths from the end

of the standard instrument departures of the origin airport to the beginning of the standard instrument arrivals of the destination

airport with the maximum length of 104% of the shortest path length. The considered aircraft is an Airbus, model A320-214,

with the engine CFM56-5B4/P. Table 2 provides the required parameters to calculate the NOx emission index of the considered

aircraft using BFFM2. The initial flight time and initial mass are modeled as Gaussian variables: t0 ∼N(0000 UTC,10)[s]480

for Scenario 1, t0 ∼N(1200 UTC,10)[s] for Scenario 2, and m0 ∼N(61600,10)[kg]. As for meteorological input data, due

to ease of availability, the ERA5 Reanalysis data products containing ten ensemble members are adopted for this study. It is

worth mentioning that forecast data with more ensemble members can be employed similarly.

The weighting parameters of the objective function given in Eq. (7) are selected as: ψCST = α [-] and ψCLM = (1−α)K

[USD/K], where K is a scaling (or conversion) factor determined as485

K =
SOCclimate−SOCcost

ATRcost−ATRclimate
(26)

where for instance, SOCclimate is the SOC calculated when the optimization objective is only the climate impact or ATRcost

is the ATR when the objective is only SOC. α ∈ [0,1] is a weighting parameter that penalizes cost versus climate impact in

which α= 0 is the pure cost optimal and α= 1 is the pure climate optimal routing strategies. In the simulations, we consider

five different values for α in order to explore the trade-off between operating cost and climate impact represented by SOC and490

ATR, respectively.

3.1 Scenario 1: formation of persistent contrails

We consider a scenario in which the aircraft flies through warming contrails for the cost optimal routing option. Before present-

ing the results, the performance of the proposed optimizer in terms of convergence and computational time is analyzed. Since

the optimization approach is stochastic, different results may be obtained with different executions. To explore the sensitivity495
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Figure 8. Sensitivity of the convergence performance of the optimization algorithm to 50 different executions for the cost and climate

optimal routing options (α = 1 and α = 0, respectively)(1 iteration ≈ 4 ms). The objective gap is calculated considering the deviations from

the best performance obtained among 50 runs (i.e., the minimum value of J) as the reference, i.e., at each iteration, the value of the objective

function (used for trajectory optimization Eq. (24)) is compared with the minimum value obtained from other executions. The mean value is

highlighted in a solid black line, and 0, 10, 90, and 100 percentiles are represented with different color bands.

of the optimization method, 50 different runs are performed with similar settings for pure cost (i.e., α= 1.0) and pure climate

optimal (i.e., α= 0.0) routing options. Then, the objective gap is calculated considering the best performance obtained from

different solutions (i.e., the minimum value of J) as the reference. The convergence performances with averaged values as

solid lines and 0, 10, 90, and 100 percentiles are depicted in Fig. 8. For both cases, with around 700 iterations (≈ 2.8s) for

the cost optimal trajectory and 900 iterations (≈ 3.6s) for the climate optimal one, the estimated objective gaps quickly reduce500

up to 1% of the values of the objective functions J . As the climate optimal routing option is associated with the inclusion

of aCCFs calculated from meteorological variables, the optimization is much more complex, which can be validated in Fig.

8. With around 4000 iterations (16s), the objective gap is reduced up to 0.5% of J . Consequently, with a maximum of 4000

iterations, near-optimal performance can be obtained with +0.5% maximum deviation around the best-obtained value (i.e., the

most optimal case).505

Now, we proceed to present the obtained results. The aircraft profiles and climate responses for different routing options

are given in Fig. 9. The SOC depends on the flight time and fuel consumption. Therefore, the aircraft for routing strategies

with higher values of α, such as α= 1.0,0.8, tends to fly at higher altitudes within the vertical constraints because flying at

higher altitudes is beneficial to reducing fuel consumption, which contributes a large part of the total operating cost (see Fig.

9a). By analyzing the lateral paths depicted in Fig. 10 with the direction and speed of wind at different flight levels, one can510

see that aircraft deviates from the shortest path to benefit from stronger tailwinds. For trajectories with lower climate impacts,

as can be seen in Fig. 9a, the aircraft flies at relatively lower altitudes compared to the cost optimal routing option mainly to
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avoid the formation of persistent contrails (due to warming impacts during nighttime). The climate optimal routing options

reduce the warming effect of contrails. Although the warming climate effects of NOx emission and water vapor increase with

climate optimal trajectories, the net climate impact decreases. This is because the climate impact of contrails outweighs the515

impact associated with other species (as discussed in Subsection 2.1.2). The contribution of each species to total climate

impact, variability of the obtained climate impacts and SOC with ranges of uncertainty for different α’s, and Pareto-frontiers

are provided in Fig. 11. For a specific case (α= 0.2), by accepting an increase of 4% in cost, there is a potential to mitigate

the climate impact by 55% considering median performance. In Subsection 2.2, it was shown that the variability of relative

humidity among ensemble members is high, leading to high uncertainty in the aCCF of contrails. As expected, the obtained520

climate impact of contrails is highly uncertain when the aircraft flies through areas sensitive to form persistent contrails. In

contrast, as the aircraft tends to avoid PCFA, the ranges of uncertainty reduce, in which, for the complete avoidance that is

achieved with α= 0.2, the climate impact is almost deterministic. In addition, SOC requires flight time and fuel consumption

to represent operating cost in USD, and as it is affected by relatively less uncertain meteorological variables (i.e., wind and

temperature compared to relative humidity for the considered case study as analyzed in Subsection 2.2), the uncertainty in its525

value is small.
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(a) Flight level, fuel consumption, true airspeed, and NOx emission.
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(b) ATR of persistent contrails, ATR of NOx emission, ATR of water vapor emission, and

net ATR of non-CO2 emissions (accumulated values along the route).

Figure 9. Results of Scenario 1 (13th of June 2018, 0000UTC) for different routing options (i.e., α’s). The shaded regions show the ranges

of uncertainty associated with uncertain meteorological conditions (outer lighter areas show the minimum and maximum values while the

inner darker ones represent 95% confidence interval).

By analyzing the contribution of each species to the net ATR for different α’s, one can conclude that the mitigation potential

is achieved mainly by avoiding contrails-sensitive areas, which result in slight increases in the climate of NOx emission (see

Fig. 11a). However, when the formation of persistent contrails is completely avoided (i.e., with α= 0.2), the optimizer tends

to reduce NOx emission mainly by reducing speed to reduce the fuel flow required to calculate NOx emission index and also530
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total NOx emission (i.e., NOx emission = NOx emission index * fuel consumption). Reducing NOx emission by flying at lower

speeds is achieved at the expense of a considerable increase in flight time and, consequently, SOC. As can be concluded from

Pareto frontiers, such a reduction in climate impact for this scenario is not cheap as only 5% more reduction in climate impact

is obtained with almost 4% more increase in SOC (α = 0.0). As the aCCF of contrails is only evaluated in areas favorable for

the formation of persistent contrails, typically determined using inequality constraints, it has sharp spatial behaviors (i.e., PCFA535

(latitude, longitude, altitude, time) ∈ { 0, 1 }). In addition, contrails have dominant climate effects. Therefore, the optimizer’s

first choice is to avoid forming persistent contrails, which may be achieved more efficiently than reducing the impacts of other

species with relatively lower climate impacts and smooth spatial behaviors. This can be validated in Fig. 11a as the lowest

priority is given to reducing the climate impact associated with NOx emission (for α= 0).

(a)

(b)

Figure 10. Lateral paths for Scenario 1 (13th of June 2018, 0000UTC) depicted with (a) wind and (b) aCCF of contrails as colormaps.
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Figure 11. Overall performance of the optimized trajectories in terms of ATR and SOC for Scenario 1 (13th of June 2018, 0000UTC).

3.2 Scenario 2: no formation of persistent contrails540

In the next scenario, we analyze the mitigation potential when no persistent contrails are formed with the cost optimal routing

option.
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For this case, aircraft profiles and climate responses are depicted in Figs. 12a, 12b, respectively. As can be seen in Fig.

12a, the optimizer chooses to fly at lower altitudes for routing strategies with higher penalization on climate impact. As no

persistent contrails are formed (see Fig. 13a), we depict the lateral paths with the merged aCCFs (calculated using the mean545

values of the obtained NOx emission index) as the colormap at different flight levels in Fig. 13b. As can be seen, flying at

lower altitudes is more beneficial in reducing the climate impact of other species (mainly NOx). In addition to lowering cruise

altitude, the aircraft flies at lower speeds to reduce the fuel flow and, consequently, fuel consumption, NOx emission index,

and NOx emission. The variability of climate impact and SOC for different α’s and Pareto frontiers are given in Fig. 14. By

reducing α, the climate impact decreases at the cost of an increase in SOC. For instance, for α= 0.2, by accepting a 0.8%550

increase in cost, a 15% reduction in ATR can be achieved. As in the previous case, the relative increase in SOC is considerable

for α = 0 since the aircraft tends to fly at a relatively lower speed for more reduction in climate impact.

In conclusion, climate impact reduction is achieved at the expense of a higher cost increase than in the previous scenario.

Moreover, since no contrails are formed, the uncertainty in climate impact is almost neglectable.
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(a) Flight level, fuel consumption, true airspeed, and NOx emission.
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(b) ATR of persistent contrails, ATR of NOx emission, ATR of water vapor emission, and net ATR

of non-CO2 emissions (accumulated values along the route).

Figure 12. Results of Scenario 2 (10th of December 2018, 1200UTC) for different routing options (i.e., α’s). The shaded regions show the

ranges of uncertainty associated with uncertain meteorological conditions (outer lighter areas show the minimum and maximum values while

the inner darker ones represent 95% confidence interval).
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(a)

(b)

Figure 13. Lateral paths with (a) aCCF of contrails and (b) merged aCCFs as colormaps at different flight levels for Scenario 2 (10th of

December 2018, 1200UTC).
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(b) ATR and SOC with ranges of uncertainty (min-max) for different routing options.
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(c) Pareto-frontiers considering absolute and relative values.

Figure 14. Overall performance of the optimized trajectories in terms of ATR and SOC for Scenario 2 (10th of December 2018, 1200UTC).

4 Discussion555

This paper presented a methodology to plan robust climate optimal aircraft trajectory under uncertain meteorological condi-

tions. Discussion on the obtained results and some general remarks are presented in the following.
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The obtained mitigation potentials for the considered scenarios were different due to the variability of meteorological con-

ditions. In both cases, the climate optimal routing options could reduce the climate impacts. The cost optimal trajectories flew

at higher altitudes compared to climate optimal ones, as flying at higher altitudes is beneficial to reducing fuel consumption.560

This is also in line with related studies in the literature (e.g., (Yamashita et al., 2020)). Due to the dominant climate impact and

non-smooth spatial behavior of contrails, the mitigation potential obtained for the scenario with contrails effects (i.e., scenario

1) was higher than the scenario with no formation of persistent contrails. The non-smooth spatial behavior of contrails’ climate

impact is related to the conditions of PCFA. Due to the high variability among the ensemble members of relative humidity over

ice needed to determine PCFA, the climate impact of contrails was highly uncertain. However, for the cases with no contrails’565

climate effect, the total climate impact was almost deterministic. This is because the variability in the other weather variables

was neglectable. For both scenarios, α = 0.2 seems to be a reasonable choice since the climate impacts were reduced at the

expense of acceptable increases in the operating cost, and the results were almost deterministic.

In spite of considering the ensemble members in trajectory planning, a unique flight plan is determined. This reflects the

operational feasibility and applicability of this method since, in the flight planning context, it is required to determine a unique570

lateral route in latitude and longitude that starts and ends at predefined points in space and follows the real structure of airspace

as well as having a fixed altitude profile and a fixed airspeed schedule. In this case, the effects of uncertainty are reflected in the

aircraft performance variables. For instance, let us consider the first scenario. For α= 1.0, the lateral path, speed schedule, and

flight level were determined in a cost optimal manner (see Figs. 9a, 10). In our approach, the optimized trajectory is assumed

to be tracked as close as possible in practice with the system’s low-level controllers in real-time. Aiming at optimizing a unique575

flight plan, the proposed method provides some ranges for the aircraft performance variables, such as fuel consumption, flight

time, and climate impact, due to different probable realizations of weather conditions. For instance, the climate impact is

expected to lie within the determined ranges (see Fig. 9b) if the considered ensemble members could acceptably predict future

weather conditions.

In this study, we only considered the minimization of the expected performance, e.g., expected climate impact. However,580

the concept of robustness is mainly related to having less uncertain results (i.e., minimizing also the uncertainty range). In the

case of robustness to meteorological uncertainty, we need to find a flight plan that avoids those areas of airspace with high

variability among the ensemble members. For instance, in (González-Arribas et al., 2018), the dispersion on the arrival time is

minimized by avoiding the regions with high variability among the ensemble members of wind (characterized by STD). In this

study, we observed that the most uncertain variable is the climate impact of contrails. Since, for both scenarios, only warming585

contrails were formed, minimization of the expected values directly led to avoiding uncertain PCFA, and as can be seen from

the results, for the climate optimized trajectories, we obtained robust solutions (almost deterministic results). However, during

the daytime, different behavior is expected for the cases with the cooling contrails. This is because, to reduce the expected

climate impact, aircraft will tend to fly in uncertain PCFA to benefit from cooling effects. In the next versions of ROOST, such

scenarios will be taken into account, and controlling the dispersion on all flight performance variables will be addressed by590

including their variance in addition to the averaged values as objectives in the objective function.
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Regarding the computational time and convergence performance, it was shown that it is scenario-dependent. For more com-

plex problems, such as the case that included climate impacts quantified using aCCFs, the optimizer required more iterations

to enhance the convergence compared to the cost optimal routing option. It is worth mentioning that the distance between the

origin and destination, available route graphs, and also parameters within the optimization algorithm can change the conver-595

gence performance and computational time. The number of iterations is a user-defined parameter that needs to be specified

based on the required performance and availability of computational resources. In the performed simulations, we considered

4000 iterations. By looking at the Pareto frontiers, it is clear that the optimizer was able to find near-optimal solutions. Thanks

to the parallelization on GPUs, the computational time for achieving a near-optimal solution is promising. There exist several

controlling parameters within the optimization algorithm of ROOST, including the number of search directions, the augmented600

random search (ARS) step size, and the Nesterov velocity factor (see (Gonzalez Arribas et al., 2020) for a description of

these controlling parameters) that can affect the convergence performance. As a future work, we aim to study the effects of all

these parameters and propose an optimal selection of them. Moreover, adaptive (scenario-dependent) stopping criteria will be

proposed helping to optimize aircraft trajectories more efficiently in the sense of computational time.

To explore the trade-off between climate impact and the operating cost, Pareto frontiers were generated. By changing the605

weighting parameter α, different Pareto optimal solutions were obtained. However, with this approach, a specific value for α

does not necessarily result in a similar cost increase and climate impact mitigation potential for different scenarios (e.g., for

α= 0.2, the climate impact is reduced by 55% and 15% by accepting 4% and 0.8% increase in the operating cost for scenarios

1 and 2, respectively). This approach is suitable for analyzing the mitigation potential for a single flight. However, it is not

the most efficient way to study the Pareto optimal solutions of the aggregated results of a large number of flights. For such610

cases, having the flexibility to directly optimize flights requesting a certain range reduction in climate impact or allowing a

specific range for the increased operating costs would be beneficial. In this respect, one can aggregate those climate optimal

trajectories, having, for instance, a +0.5% to +1.0% increase in the operating cost. In future versions of ROOST, we will add

this feature to the optimization tool by defining some path constraints. Such an aggregation of results is doable with α, however,

one needs to generate more points in the Pareto frontier in order to classify the results based on a certain percentage increase615

in cost or a percentage decrease in climate impact. Scaling up this trajectory level analysis to the network scale will increase

the computational time by a factor of the considered α’s.

As was explored in the paper, the mitigation of climate impact within the flight planning context is achieved only by accepting

some extra costs due to avoidance of highly climate-sensitive regions, which is in line with related studies in the literature (e.g.,

(Yamashita et al., 2020, 2021; Lührs et al., 2021; Niklaß et al., 2019)). An alternative for the compensation of such additional620

costs is to consider fees and taxes for the aviation-induced climate impact in order to motivate airliners to adopt climate

optimal trajectories. Currently, there is no climate policy for the aviation non-CO2 climate effects in the planned market-based

instruments such as the emission trading scheme (ETS). However several studies have proposed frameworks to include costs

of aviation-induced non-CO2 climate effects into the operating cost, such as the concept of equivalent CO2 emissions and the

concept of climate-charged airspace (Niklaß et al., 2021). If taxes are applied to the non-CO2 climate effects, climate optimal625

trajectories can also be economically beneficial.
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The aCCFs used in this study represent a prototype formulation. The aCCF algorithms were developed for meteorological

summer and winter conditions with a focus on the North Atlantic flight corridor. Thus, the usage of the aCCFs for different

seasons and regions needs special caution. However, further development of the aCCFs and an expansion of their geographic

scope and seasonal representation is ongoing research.630

5 Conclusions

This paper addressed the problem of determining robust climate optimal aircraft trajectory within the structured airspace under

uncertain meteorological conditions. The climate-sensitive regions were identified using the prototype algorithmic climate

change functions version 1.1. The ensemble prediction system was employed to characterize uncertainty in weather forecasts.

It was shown that there is relatively high uncertainty in contrails’ aCCF due to the high variability among ensemble members635

of relative humidity. A heuristic algorithm was employed and implemented on graphics processing units to solve the proposed

robust trajectory optimization in a computationally fast manner. The effectiveness of the proposed approach was explored in

two scenarios. It was concluded that the best mitigation potential is obtained when the aircraft flies through contrails-sensitive

areas for the cost optimal routing option. For a specific case of this scenario, a 55% reduction in climate impact was achieved at

the expense of a 4.0% increase in cost. Due to relatively high uncertainty in the climate impact of contrails and their dominant640

climate effects, the net ATR was highly uncertain for the cases aircraft flew through PCFA. However, by moving toward

trajectories with lower climate impacts (mainly achieved by avoiding the formation of persistent contrails), the dispersions of

climate impacts were reduced. For the case with no formation of persistent contrails, the aircraft tended to reduce the climate

impacts associated with other species at the expense of a relatively higher cost. However, 23% of climate impact could still be

reduced by accepting a 3% increase in cost, and since no contrails were formed, the results were almost deterministic.645

Code availability. The robust aircraft trajectory optimization technique presented in the paper is released as an open-source Python Library

called ROOST V1.0 (Robust Optimization of Structured Trajectories).

It is developed at https://github.com/Abolfazl-Simorgh/roost, and is available via the DOI (https://doi.org/10.5281/zenodo.7121862). It is

distributed under the GNU Lesser General Public Licence (Version 3.0). All the results presented in the paper were obtained using ROOST.

To run the examples, one needs the BADA4.0 license. For the future release of the library, we aim to make the library compatible with650

open-source aircraft performance models such as OpenAP (Sun et al., 2020).

Data availability. The ERA5 data sets used in this study can be freely accessed from the respective repositories after registration. ERA5

data were retrieved from the Copernicus Climate Data Store (https://cds.climate.copernicus.eu/, European Reanalysis 5, 2020). Last ac-

cess:05/2022.
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